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We present an intelligent approach to multitrack dynamic range compression where all
parameters are configured automatically based on side-chain feature extraction from the input
signals. A method of adjustment experiment to explore how audio engineers set the ratio and
threshold is described. We use multiple linear regression to model the relationship between
different features and the experimental results. Parameter automations incorporate control
assumptions based on this experiment and those derived from mixing literature and analysis.
Subjective evaluation of the intelligent system is provided in the form of a multiple stimulus
listening test where the system is compared against a no-compression mix, two human mixes,
and an alternative approach. Results showed that mixes devised by our system are able to
compete with or outperform manual mixes by semi-professionals under a variety of subjective

criteria.

1 INTRODUCTION

Dynamic range compression (DRC) is a nonlinear audio
effect that reshapes the dynamic range of an audio sig-
nal resulting in a reduced amplitude range [1, 2]. DRC
is commonly used in audio production, noise manage-
ment, broadcasting, and live performance applications. To
a large extent, DRC defines much of the sound of contem-
porary mixes. However, it is arguably the most misused
and overused effect in audio mixing [1]. If used exces-
sively, the dynamic range compressor suppresses musical
dynamics, producing lifeless recordings deprived of their
natural character. Inappropriate parameter settings also pro-
duce artifacts such as pumping and breathing. Furthermore,
conventional use of a static set of compressor parameters
might not be optimal when the dynamic characteristics of
the signal vary significantly over time.

Parameter automation of a dynamic range compressor
using computerized signal analysis can provide advantages
to audio amateurs or musicians who lack expert knowledge
in signal processing. Such tools are capable of producing
intelligent mixing decisions [3] that speed up the routine
work and the trial-and-error process of avoiding inappro-
priate sonic artifacts.

Automatic DRC is a relatively unexplored field in
academia. An RMS measurement was used to scale the
release time constant in [4]. In [5] the time constants were
automated by observing the difference between the peak
and RMS levels of the signal fed into the side-chain. More
relevant research can be found in [6, 7] where a series of
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methods to automate most of the parameters of a digital
dynamic range compressor based on side-chain feature ex-
traction from the input signal were presented. However, in
this system, the threshold was still manually chosen, with
ratio set to infinity and an automated soft knee determining
the amount of compression based on spectral flux. A new
linear DRC technique that reduced the peak amplitude of
transient signals using golden ratio allpass filters was in-
troduced in [8]. In [9] a new class of adaptive digital audio
effects that mapped semantic metadata to control parame-
ters was proposed. However, the system assumed that the
metadata already exists either from a prior process or man-
ual configuration and might be invoked on demand. The
automation was performed using a fairly simple mapping
between different selection of metadata and static compres-
sion presets. No subjective evaluation was provided.

Perhaps the most relevant previous work is [10], which
described an off-line method for automating multitrack
DRC based on loudness and loudness range. The control
strategy was to reduce the difference between the highest
and lowest loudness range of the multitracks and sound
sources where a higher loudness range requires greater
amounts of DRC. However, the parameter automation of
transforming the three controls (threshold, ratio, and knee)
into a single control could have a significant effect on the
final result. The evaluation results in [10] were inconclusive
regarding the sonic improvement of the mixes.

In this paper we propose a fully automated multitrack
DRC algorithm exploiting the interdependence of the input
audio features in order to produce the appropriate amount of
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Fig. 1. Static DRC characteristic with make-up gain and hard or
soft knee

compression, incorporating best practices as control rules.
Sec. 2 provides control assumptions to automate the system
and the rationale as to why the proposed features explored
in Sec. 3 are relevant. A DRC method of adjustment exper-
iment is described in Sec. 3 and multiple linear regression
models are then applied to the results to derive the ratio
and threshold automations. Finally, the intelligent multi-
track DRC algorithms are presented in Sec. 4 followed by
a subjective evaluation in the form of listening test in Sec.
5 and conclusion in Sec. 6.

2 BEST PRACTICES IN USE OF DRC

2.1 Compressor Model and Parameters

The fundamental digital compressor model design em-
ployed in our approach is a feed-forward compressor with
smoothed branching peak detector [6, 7]. A typical set of
parameters of a dynamic range compressor can be briefly
described as follows:

Threshold denotes the level above which gain reduction
starts. Ratio determines the input/output ratio for signals
exceeding the threshold level. Attack and Release time,
also known as time constants, determine how fast the com-
pressor acts. Knee width controls whether the threshold-
determined point in the transfer characteristics of a com-
pressor has a sharp (hard-knee) or smoothed transition (soft-
knee). As the compressor reduces the level of the signal,
a Make-up Gain can be added at the output to compensate
for level loss. The static transfer characteristic of DRC is
depicted in Fig. 1. A dynamic range compressor may have
many additional controls such as hold, side-chain filtering
or look-ahead [1].

2.2 Control Assumptions

In this section we list and discuss control assumptions
derived from the literature and analysis to automate the
compressor parameters.
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List of Assumptions:

1. A signal with a high degree of level fluctuations
should have more compression.

2. A signal with more low frequency content should
have more compression.

3. Attack and release time should be dependent on the
transient nature of the signal.

4. Knee width should depend on the amount of com-
pression applied.

5. Make-up gain should be set so that output loudness
equals input loudness.

6. There is a maximum and optimal amount of DRC
that depends on sound source features.

Regarding Assumption 1, in a survey about the main rea-
sons to apply DRC [11, 12], most professional mixing engi-
neers who participated stated that their main intention was
to “stabilize erratic loudness range.” They often compress
instruments that have high note-to-note level variations,
such as vocals or drum tracks, so that their relative levels are
more consistent. A number of dynamics features have been
proposed recently that measure the degree of level fluc-
tuation, including EBU loudness range [13] and dynamic
spread [14], which is simply the p-norm of the signal. Yet
subjective listening test results in [15] suggested none of the
metrics accurately predict the perceived dynamic range of a
musical track. In [16], the authors proposed some parameter
alterations of [13] that might yield better results for mul-
titrack material. Alternatively, the crest factor, calculated
as the peak amplitude of an audio waveform divided by its
RMS value, can also be a coarse measurement of dynamic
range.

Assumption 2 is based on analysis of mixes in [11,
12], which showed that “Compression takes place when-
ever headroom is at stake and the low-end is usually more
critical.” Thus spectral features of the source audio signal
such as spectral centroid, spectral spread, and brightness
are worth exploring to reveal the degree of frequency de-
pendence and low-end sensitivity of DRC.

As for Assumption 3, attack times usually span between
5 ms and 250 ms and release times are often within the
5 — 3000 ms range. It is generally accepted that attack and
release time parameters are employed to catch the transient
nature of the sound [1, 17]. Some commercial compressors
offer a switchable auto-attack or auto-release, which are
mostly based on measuring the difference between the peak
and RMS levels of the side-chain signal. In academia, [4]
proposed to scale the release time based on RMS values,
[5] scaled attack and release times based on the crest factor.
More recently, [6] revisited the subject and scaled both
parameters based on either modified crest factor or modified
spectral flux, also used in [10]. Previous research shares a
general idea: if a signal is highly transient or percussive,
shorter time constants are preferred.

Regarding Assumption 4, a soft knee enables smoother
transition between non-compressed and compressed parts
of the signal and thus yields a more transparent com-
pression effect. In order to produce a natural compression
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effect in an automatic mixing system, the knee width should
be adaptively configured based on the estimated amount
of compression applied on the signal [3]. The amount of
compression applied largely depends on the relationship
between threshold and ratio.

Assumption 5 can be regarded as a direct consequence
of the definition of make-up gain. Automatic make-up gain
based on the average control-voltage is commonly used
in commercial DRC products. However, [1] pointed out
that this often produces a perceived loudness variation in
practice. Subjective evaluation in [6] showed that the EBU
loudness-based make-up gain produced a better approxi-
mation of how professional mixing engineers would set the
make-up gain.

As for Assumption 6, quantitative descriptions about the
amount of compression that should be applied on different
instruments can be found in the literature [18, 19]. [6] per-
formed a discrete separation between transient and steady
state signals and allowed the former to have larger variabil-
ity of the knee width in order to accommodate for transient
peaks. In [20], percussive tracks are manually separated
from sustained sounds, as they are assumed to need a dif-
ferent treatment.

3 RATIO AND THRESHOLD ADJUSTMENT
EXPERIMENT

Ratio and threshold are the most crucial parameters in
determining the amount of DRC. Assumptions 1 and 2 (Sec.
2.2) suggest that audio features that describe the dynamic
and spectral content of the signal might have a high degree
of correlation with the preferred amount of DRC. We pro-
pose a method of adjustment experiment to uncover how
subjects set the ratio and threshold. Several feature candi-
dates are proposed and their correlations with the subjective
results are analyzed. We apply a least-squares based multi-
ple linear regression model to formulate the relationship be-
tween the identified features and the test results and finally
to derive the ratio and threshold parameter automation.

3.1 Method of Adjustment Experiment

Fifteen participants, all of whom have audio engineering
experience, two of whom are professional mixing engi-
neers, were recruited to perform a DRC adjustment task
on four multitrack recordings in various genres (Song 1:
Rock; Song 2: Pop; Song 3: Alternative; Song 4: Folk).
Twenty-second excerpts were extracted from the chorus of
each song for use in the test. The test subjects were asked to
set the ratio and threshold for each instrument track of each
song until they were satisfied with the amount of DRC ap-
plied to the mix. A solo function to play back an individual
track with or without compression was provided in the ex-
periments. However, subjects were advised to listen to the
mix when setting the parameters for each individual track.
Other compressor parameters were automated as described
in Sec. 4. The ratio and threshold values were hidden from
participants to prevent bias resulting from common prac-
tices.
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The average results of the 15 participants for ratio and
threshold for each track, along with 95% confidence inter-
vals, are shown in Fig. 2. The small variations in results
were unexpected since dynamic range compression is often
assumed to be an art, with varying tastes in its application.
However, we can also see from Fig. 2 that different tracks
have differing variation sizes, suggesting that DRC param-
eter setting is track dependent. We further note that half of
the participants are from the same UK research group and
thus might share a similar taste in compression that could
potentially bias the results.

3.2 Feature Correlations

Several dynamic and spectral features are proposed, ex-
tracted, and analyzed based on the subjective results.

First, the RMS level as arough dynamic feature is defined

by Eq. (1),

ey

XRMS = 20 ]Oglo

where N is the window length.

EBU loudness range (LRA) is defined as the difference
between the 10th percentile and the 95th percentile on the
histogram after a dual gating process [13].

Dynamic spread [14] is given by Eq. (2),

N-1

1
d= v ; |xap(n) — Xpums| 2

where x5 is the input signal in digital full scale (dBFS).
The spectral centroid [21] is the barycenter of the spec-
trum, calculated by Eq. (3),

K—1
Y f)X(K)
W= 3)
> X(k)
k=0

where X(k) represents the spectral magnitude of signal x(n),
of bin number k, and f{k) represents the center frequency at
that bin.

Spectral spread [21] represents the spread of the spectrum
around its mean value is defined as

>~

—1
(X(k) — W) f (k) )

2 _
o, =
k
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S

The brightness [21] of the signal is defined as the amount
of energy above a defined cut-off frequency of 1500 Hz.

The practical calculation of the features mentioned be-
fore can be found in [21]. We also propose two new, cross-
adaptive audio features called percussivity weighting and
low-frequency weighting.

Percussivity weighting describes the cross-adaptive re-
lationship among all the input signals regarding the degree
of level fluctuations and is based on the crest factor values.
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Fig. 2. Ratio and threshold mixing results with 95% confidence intervals

First, the average value of the crest factor over all tracks is
computed as

Xcrest =

1 M
M Z xcrest(m) (5)

m=1

where m is the index of the track number and M is the
total number of input tracks. The average crest factor X,y
is then used as an adaptive threshold for the percussivity
weighting w,(m) calculation.

The mapping between w,(m) and X, is formulated
using a modified Gaussian distribution centered around

'X‘CVESTby Eq’ (6)?

% 2
(Xcrest —Xcrest)

g() = ae T ©)

where o is the standard deviation controlling the width of
the ‘bell” shape. w,(m) is formulated empirically as follows,

Gerest (M) ~Terest)
2
e 20 s

Gerest (M) =Terest)

2—e¢ 22

Xerest (M S)_Ccres
wy(m) = 1(m) O

’ xcresl(m) > )_Ccrest

o is set to 2 based on informal testing. Eq. (7) shows that
wy,(m) € (0,2) . The larger the w,(m) value, the more per-
cussive the m™ track is. Eq. (7) guarantees that most values
of w,(m) are centered on the adaptive reference X,y
Low-frequency weighting is introduced to describe the
relative amount of low-frequency energy of each signal
compared to the average low frequency ratio. A Fast Fourier
Transform (FFT) with Hanning window is performed on
each signal frame to obtain the spectral distribution, X(m,k)
of track m at frequency bin k. Xj,,(m,k) is the spectral
distribution of low-pass filtered version of input signals
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with cut-off frequency set to 1 kHz, the cross-adaptive low-
frequency weighting, w s(m) is defined by Eq. (8),

Z_ Xiguw(m.k)
= X(m,k)
wy = —— (8)
% Z Xiow(m,k)
| = X(m k)

The values of each described feature are extracted from
each multitrack and shown in Table 1. The cross-correlation
coefficient between each feature and the averaged ratio and
threshold values across 15 participants is calculated as fol-
lows

M
Y (i = D) — )
Fey = ——— ©9)
/Zl(x, —x)ZZ(y —y)?

where x; is the feature value, y; is the observed ratio or
threshold value of each multitrack, and ¥, y are the respec-
tive means. The coefficients are listed in Table 2

As Table 2 shows, spectral features generally exhibited
higher correlation with ratio parameter than dynamic fea-
tures. This is in agreement with Assumption 2. The pro-
posed low-frequency weighting shows the highest correla-
tion with the ratio parameter.

The RMS level shows the strongest correlation with
threshold. However, in the spectral feature subgroup, all
correlations are relatively weak, indicating that dynamic
features play a more significant role in setting the threshold
parameter than spectral features.

Notice that the perception-based EBU LRA has the low-
est correlation coefficients with both ratio and threshold.
First, EBU loudness is designed for broadcast material
rather than individual tracks in multitrack content. Sec-
ond, the 3s integration window length is too long to capture
small level fluctuations in terms of dynamics.
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Table 1. Dynamic and spectral feature values

Spectral ~ Spectral
Percussivity EBU loudness  Dynamic Low-Frequency Centroid spread
Song Track weighting range (LU) Spread  RMS (dB) weighting Brightness (Hz) (Hz)
1 Bass 0.36 1.17 1.31 -15 1.37 0.026 373.1 1315.8
Druml 0.86 1.69 8.09 -17.5 1.38 0.539 3479.7 3906.4
Drum?2 1.52 2.09 3.39 -18.4 0.85 0.694 4394.7 3973.4
Guitarl 1.15 0.47 0.88 -14.6 0.75 0.458 1762.1 1697.7
Guitar2 1.07 0.77 0.97 -17.2 0.56 0.549 2140.9 1987.3
Vocal 0.67 3.54 8.08 -19.8 0.72 0.592 4313.2 4219.6
2 Bass 0.52 1.88 247 -16.8 1.13 0.049 476.5 1331.6
Druml 0.93 391 10.65 -26.3 1.35 0.360 1927.8 2834.3
Drum?2 0.99 4.85 9.79 -25.6 0.93 0.440 2051.3 2665.5
Guitarl 0.34 7.80 3.88 -13.6 1.03 0.196 836.5 1358.3
Guitar2 0.36 0.65 2.02 -12.4 0.58 0.257 1087.3 1378.8
Percussion 1.98 0.77 3.19 -31.9 1.29 0.997 3082.4 4115.7
Vocal 0.63 6.08 8.38 -21.2 0.62 0.429 3354.7 4376.5
3 Bass 0.6 3.02 6.14 -17.2 1.38 0.105 683.7 1922.6
Druml 0.64 5.41 12.04 -25.1 1.63 0.488 3512.2 4245.3
Drum?2 0.97 6.83 10.58 243 0.94 0.525 3563.6 4396.2
Guitarl 0.99 2.00 1.26 -22.1 0.88 0.365 1458.2 1648.4
Guitar2 1.13 3.67 1.96 -21.2 0.48 0.597 1987.3 1778.5
Keyboard 1.01 391 2.67 -15.6 0.41 0.317 1573.1 2258.3
Vocal 0.96 10.20 17.92 -21.6 0.79 0.305 1908.5 2628.4
4 Bongo 0.98 1.61 13.93 -26.2 0.92 0.222 1473.9 2406.1
Guitarl 1.01 2.97 2.50 -30.5 0.93 0.170 1216.7 2691.3
Guitar2 1.31 4.52 6.33 -18.3 1.25 0.390 2459.7 3695.1
Percussion 0.76 322 26.98 -30.5 1.22 0.388 3082.4 4412.0
Vocal-M 1.12 4.94 2.80 -25.4 0.88 0.224 1507.0 2798.0
Vocal-F 0.7 9.30 10.44 -20.1 0.72 0.340 2581.7 4061.4

3.3 Curve Fitting: Modeling Ratio and Threshold

Multiple linear regression techniques are applied to
model the relationship between the proposed features and
the ratio and threshold experiment results [22]. Combi-
nations of different audio features and various modeling
functions are investigated to obtain the best fit by assessing
their Goodness-Of-Fit (GOF) statistics, confidence inter-
vals, and residual plots with validation data.

We investigate various modeling functions with all the
feature combinations considered. Ratio curve fits with sig-
nificant Goodness-Of-Fit are presented in Table 3. Insignif-
icant fits are not depicted in the table.

The Sum of Squares due to Error (SSE) is the total de-
viation of the response values from the fit to the response

values, or simply the sum of squares of residuals, calculated
as
n
SSE =" (yi — ) (10)
i=0
where y; is the i response value from the fit, §; is response
value and 7 is the number of observations. It is a measure of
the discrepancy between the data and an estimation model.
A small SSE indicates a tight fit of the model to the data.
The coefficient of determination, denoted R2 provides a
measure of how well observed outcomes are replicated by
the model, as the proportion of total variation of outcomes
explained by the model. R? ranges from 0 to 1, with a
value closer to 1 indicating that the model accounts for a

Table 2. Feature correlations

Feature Ratio Correlation Threshold Correlation
Dynamic Feature Percussivity 0.4954 -0.6019
LRA —0.1499 —-0.1275
Dynamic Spread 0.2486 0.3294
RMS level —0.4871 0.6659
Spectral Feature Low-Frequency 0.6351 -0.248
Spectral Centroid 0.3592 -0.2031
Spectral Spread 0.4996 -0.3571
Brightness 0.3791 -0.3926
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Table 3. Ratio curve Fitting results Goodness-Of-Fit

Feature Selection

Goodness-Of-Fit

Modeling Functions Adjusted
X data Y data fx,y)=... Coefficients SSE  R-square R-square RMSE
Low-Frequency pPix + p2 p1=0.7411;p, = 1.51 2.101 0.4034 0.3785  0.2959
Percussivity pix + p2 p1 = 0.5077;p, = 1.762 2.657 0.2454 0.214 0.3327
Percussivity Low-Frequency  piox + po1y pio = 0.969; po; = 1.342 245  0.3043 0.2753  0.3195
Percussivity Low-Frequency Poo + Prox + pory Poo = 0.968; pjp = 0.554 1.078  0.6939 0.6673  0.2165
Po1 = 0.783
Percussivity Low-Frequency 1+ piox + pory p1o = 0.540; poy = 0.764 1.079  0.6935 0.6807  0.2121
Percussivity Low-Frequency  poo + piox + po1y +  poo = 1.108; pjp = 0.122 1.84 04776 0.4063  0.2892
puxy Po1 = 1257, P = 1.108
Percussivity Low-Frequency  poo + piox + pory + poo = 0.933; p1p = 0.222 0.915 0.7401 0.6752  0.2139
p20x2 = +puxy+ Por = 1.325; P = -0.182
P02y P2 = 0008, P2 = 0.008
Percussivity Low-Frequency P12% + p22? p1 = 0.4508; p, = 0.6694 1.337  0.6202 0.6044  0.2361
LRA Low-Frequency  poo + piox + pory poo = 1.57; pjp =-0.013 2.07 04121 0.361 0.3
por = 0.731
Dynamic spread Low-Frequency  poo + piox + po1y poo = 1.5; p1o = 0.052 2077 04101 0.3588  0.3005
por =0.714
Dynamic spread Low-Frequency  pgo + piox + pory + poo = 1.283; p1o = 0.043 1.86  0.4719 0.3398  0.3049
pz()xz =+ puxy+ Po1 = 0.972; P = -0.003
p02y2 P20 = 0017, P2 = -0.159
RMS Low-Frequency  poo + piox + pory Poo = 1.117; pyy = 0.023 1.724 05103 04677 0.2738
por = 0.6.34
Percussivity Spectral Spread Poo + P1oX + pory + Ppoo = 1.516; pp = 0.3844 2.196  0.3762 0.322 0.309
Paox> = +prixy + po1 = 0.0001
Poz)’2
Percussivity Spectral Spread Poo + Prox + poo = 0.754; p1p = 0.3546 2.206  0.3735 0.319 0.309
Ppor log(y) por = 0.7768
Percussivity Spectral Centroid  pgg + prox + poo = 1.31; pip = 0.4502 2.621  0.2557 0.191 0.3376
Ppor log(y) por = 0.1546
Percussivity Brightness Poo + Piox + pory poo = 1.761; po = 0.4647 2.651 0.2472 0.1817  0.3395

poi = 0.105

greater proportion of variance. The general definition of the
coefficient of determination is given by Eq. (11),

an

where SST is the total sum of squares proportional to the
sample variance, defined as,

SSE = (i~ (12)
i=0

where y is the mean of y;.

Degrees of Freedom Adjusted R* is generally the pre-
ferred indicator to compare two models that are nested.
Like R?, it ranges from O to 1, and is given by Eq. (13),

SSE(n—1)
SST(v)

R? 1—

adjusted =

13)

where v = n-m, v indicates the number of independent
pieces of information involving the n data points that are
required to calculate the sum of squares and m is the number
of fitted coefficients estimated from the response values.

J. Audio Eng. Soc., Vol. 63, No. 6, 2015 June

Root-Mean-Square Error (RMSE) estimates the standard
error of the regression, as defined in Eq. (14),

(i — $1)2
i=1

RMSE = (14)

n

We found that the combination of percussivity and low-
frequency weighting generates the best fit regardless of
the modeling function evaluated. In general, the modeling
functions using percussivity and low-frequency weighting
yield an SSE smaller than 1.5 and RMSE smaller than 2.5,
while others show a SSE larger than 2 and RMSE larger than
3. The results agree with the feature correlation coefficients
obtained in Sec. 3.2.

Four models, f{x,y) = pootpiox+pory, fixy) =
prox+pory+1, fixy) = poo+poiy+...+poay” and fixy) =
p12*+p,2” performed a significantly better fit based on the
Goodness-Of-Fit statistics.

By comparing the Goodness-Of-Fit produced by the first
order polynomial f{x,y) = poo+piox+po1y with flx,y) =
P1oXx+po1y, both use the percussivity and low-frequency
weighing features, we see that SSE decreases by more than
half and RMSE decreases by roughly 0.1. This means the
accuracy of the model improves. Moreover, since the two
models are nested, the adjusted R? increases significantly
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Fig. 3. Residual plots of the first and second order polynomial models, where proposed low-frequency weighting and percussivity

weighting feature are denoted as FW and PW respectively.

from 0.2753 to 0.6673 when adding the additional con-
stant term pgo, implying the latter performs better again.
The model f(x,y) = poo+piox+po1y also outdoes fix,y) =
P12¥+p,2" with lower SSE and RMSE. The adjusted R? of
the model f{x,y) = piox+po1y+1 is larger than the one of
f(x,y) = poo+piox+po1y, indicating that it excels the latter
in the performance of model prediction.

Although the second degree polynomial model has
slightly larger RMSE, SSE is smaller and R? is larger. Since
they are not nested, we cannot pick the best fit based on their
adjusted R? coefficients. Therefore, we plot residuals and
prediction bounds to assess both models graphically. The
residual plots of the two models are shown in Fig. 3. Nei-
ther residual plot provides exhibits structure, suggesting
that both models fit the data to an acceptable extent. The
prediction bounds with 95% confidence level are presented
in Fig. 4. The prediction bounds for the first degree polyno-
mial model with 1 as constant term indicate that the model
can be predicted with a small uncertainty (less than 0.8)
throughout the entire data range. This is not the case for the

W, FW

2547

Ratio

PW

second degree polynomial model. It has wider prediction
bounds in the area where not enough data exists, appar-
ently because the data does not contain enough information
to estimate the higher degree polynomial terms accurately.
In other words, a second order polynomial model overfits
the data.

With all criteria considered, f{x,y) = piox+po1y+1 us-
ing percussivity and frequency weighting performs the best
curve fit.

We perform the same analysis procedure for the model
fitting of threshold. The Goodness-Of-Fit statistical results
for the threshold curve fitting are presented in Table 4.
Again, only modeling functions with relatively good degree
of fit are listed here.

Analysis from Table 4 shows that models using a feature
combination of RMS and percussivity weighting employing
first and second order polynomial functions outperform
others, with lowest SSE of 259.6, 246.1 and highest R?
of 0.5565, 0.5796 respectively. Furthermore, second order
polynomial models have a slightly better fit than first order

2 05
PW FW

Fig. 4. Prediction bounds with 95% confidence level of the first (top) and second (bottom) order polynomial models.
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Table 4. Threshold curve fitting results with Goodness-Of-Fit

Feature Selection

Goodness-Of-Fit

Modeling Functions Adjusted
X data Y data fx,y)=... Coefficients SSE  R-square R-square RMSE
RMS p1x + p2 p1 = 0.5947; p, =-12.33 325.8 0.4434 0.4203 3.684
RMS p1x2+ poxt + ps p1=-30.29; p,=1.341 3194 0.4543 0.4069  3.727
p3=—4.584
RMS plxd +p2x ... +p4d  p;=0.0007; p,= 0.06706 319.1  0.4549 0.3806  3.808
p3=—-2.409; p, = 2.676
Percussivity pix + pa p1 =-7.954; p, =-17.66 373.3  0.3623 0.3358 3.944
Percussivity pi1x2 4 pox' + ps p1=0.8318; pr,=-9.69 3725  0.3637 0.3084  4.024
p3= 16.88
RMS Percussivity P1oX + po1y pro= 0.8659; po1= —6.59 4414  0.246 0.2145 4.289
RMS Percussivity Poo + P1oX + pory poo=—11.03; pjp = 0.441 259.6  0.5565 0.5179 3.36
por = —4.987
RMS Percussivity Poo + PioX + pory + poo=—0.951; p;p = 1.684 246.1  0.5796 0.4745 3.508
DaoX> =+ prixy + por = 1.267; p;; = 0.032
p02y2 P2 = 0199, P2 = -0.89
Dynamic Spread  Percussivity Poo + ProX + pory poo=—14.85; p1o =-0.3217 2768 0.5271 0.486  3.469
por =-8.614
LRA Percussivity Poo + ProX + pory poo=—1522; p1o=—-0479 3349 04279 03782 3.816
po1 = —8.662
RMS Brightness Poo + Prox + pory poo=—11.72; pjy =-0.537  303.3 0.4819 04369  3.631
po1 = —4.691
RMS Spectral Spread ~ poo + prox + poo= —8.551; p1p =0.5706  324.8 0.4451 0.3968 3.758
por log(y) por =—1.253
RMS Spectral Centroid  poy + prox + Poo=—7.162; p1o = 0.5589 320.2  0.4529 0.4054 3.731

por log(y)

por =-1.815

in terms of SSE and R>. However, when comparing the
R%,, justed and RMSE values, first order appears to be the
right choice.

Residual plots of each modeling are shown in Fig. 5.
Neither residual plot provides evidence for choosing the
best fit. Therefore, prediction bounds with 95% confidence
level are further considered, as shown in Fig. 6. The second
order polynomial model has a wider prediction bounds and
tends to over-fit the data.

With all criteria considered, the first order polynomial
model using RMS and percussivity weighting, performs
the best data fit.

® poly1 - residuals

4 IMPLEMENTATION

In Cross-Adaptive Digital Audio Effects (CA-DAFX),
the signal processing of any individual source is informed
by the relationships between all involved sources [2, 3]. The
cross-adaptive processing section of an intelligent multi-
channel audio editing system exploits the interdependence
of the input features in order to output the appropriate con-
trol data. This data controls the parameters in the signal
processing of the multichannel content. The cross-adaptive
feature processing can be implemented by a set of con-
strained rules that consider the interdependence between

A

Threshold
AR O N B O
I’ ! f !
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.

Threshold

Fig. 5. Residual plots for first and second polynomial models
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Fig. 6. Prediction bounds with 95% confidence level of the first (top) and second (bottom) order polynomial models.

channels. Extracted features from all channels are sent to
the same feature-processing block where controls are pro-
duced.

The proposed intelligent multitrack compressor is based
on the CA-DAFX processing architecture [2, 3]. The system
workflow is depicted in Fig. 7.

The ratio and threshold automation is derived from the
previous curve fitting process described in Sec. 3.3.

For ratio automation we choose the model of f{x,y) =
pirox+po1y+1 with percussivity and frequency weighting
features that performs the best curve fit. The final ratio
automation for track m is given by Eq. (15),

R(m) = 0.54w,(m) 4+ 0.764w s(m) + 1 (15)

Similarly, the threshold automation follows the first order
polynomial model, f{x,y) = poo+p10x+po1y with RMS level
and percussivity weighting (see Table 4). The threshold
automation is defined as,

T(m) = —11.03 + 0.44xgps(m) — 4.987w,(m) (16)

Learning from Assumption 3, we adapt the algorithms
for attack and release automation in [6] using crest factor as
a short term signal measure to describe the transient nature
of the input signals.

To obtain the average RMS values sample by sample, we
apply an Exponential Moving Average filter,

xrursin] = /(1= x2[n] 4 oy ln — 1] (17)

The sample by sample average peak magnitude of the
signal is calculated as

Speakln] = \/max(x2[n], (1 — x2[n] + o2, [n — 11)

(18)

Since the peak detector’s and RMS detector’s smoothing
constantsaare set to be identical, the release envelopes of
both detectors are guaranteed to be the same, and the peak

420

detector’s output is no less than the detected RMS output.
The crest factorx,,.s; of the signal is defined as

X peak [n]

19
Xrmsln] (19)

Xerest ] =

Based on [6], the attack and release time constants are
calculated by
2TA—max
xcz’resr[”]

2TR—max
2
Xerest[n]

Taln] =
(20)
wrln] =

where the maximum attack time T _nax 1S set to 80 ms and
the maximum release time Tz_max 18 set to 1000 ms [6].

According to Assumption 4, we set the knee width to
half the absolute value of the automated threshold value for
a soft knee configuration as

|7 (m)|

W(m) = >

2y

that ensures that a lower threshold results in a wider knee
width.

Following Assumption 5, make-up gain is set so that
output loudness equals input loudness. The make-up gain
is simply the loudness difference between the input and
output of the DRC, measured following the EBU loudness
standard [13],

G(m) = Lin(m) — Loy (m) (22)

where L;, and L,,,,; are the input and output loudness values
of individual source m, before and after the compression
block. In automatic mixing, the loudness setting is usually
done post-compression. This is not as simple as it may
seem since an adaptive time-changing make-up gain acts as
an auto-leveller and may neutralize the compression effect.
Therefore, real-time implementation implies a very delicate
choice of time constants for the adaptation process and a
convergence strategy using cumulative values similar to the
one that has been proposed for several instances of auto-
mixing.
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Fig. 7. System block diagram of the CA-DAFX intelligent multitrack compressor

5 SUBJECTIVE EVALUATION

5.1 Methods

Subjective evaluation of the intelligent multitrack com-
pression algorithm was performed in the form of a multiple
stimulus, MUSHRA-style [23] listening test.

Five versions of six different multitrack songs (20-second
segments, not used in the ratio and threshold adjustment
experiment) in various genres were created and compared in
the test: ano-compression mix, the proposed automatic mix,
two different manual mixes produced by semi-professional
mixing engineers, and another automatic mix produced by
an alternative approach [10]. Analysis and evaluation of
audio features of these semi-professional mixes used can
be found in [24].

In all mixes, the only parameter modified was the dy-
namic range compression to minimize the perceptual bias
caused by other audio effects as much as possible. The
loudness of the final mixes were normalized manually by
a group of professional mixing engineers [23], as done on
the same playback system as the subjective evaluation. The
order of mixing versions and songs presented to each par-
ticipant was randomized by a pseudorandom number gen-

J. Audio Eng. Soc., Vol. 63, No. 6, 2015 June

erator algorithm in Matlab. Participants were encouraged
to take as much time as needed.

Sixteen participants with moderate audio engineering ex-
perience, seven of whom were from the same group of
people used in the previous ratio and threshold adjustment
experiment, were asked to rate the mix versions according
to four specific criteria/questions on a scale of O (very bad)
to 100 (excellent):

QI1: According to the appropriateness of the amount of
dynamic range compression applied to each individ-
ual sound source in the mix.

: In terms of the degree of any imperfection such as
pumping, breathing artifacts, level imbalance, etc.
: According to the ability to stabilize the erratic level

fluctuation within the mix.

: According to participants’ own overall preference.

Since DRC can be relatively subtle, we chose different
songs for different questions to maximize the difference.
Six songs were tested in Q1 and Q4 while four songs were
tested in Q2 and Q3. For Q1, a no-compression mix of each
song was also presented as a “reference.” However, it does
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Fig. 8. Averaged results of Q1: amount of DRC with 95% confidence intervals, grouped by mix type

not serve as objectively high quality reference or objectively
low quality anchor, which was explained to the participants
in advance. The order of the songs as well as the order of
the versions of each individual song was randomized when
presented to each participant for each question.

5.2 Evaluation Results
5.2.1 Q1: Appropriateness of the Amount of DRC

In QI participants were asked to rate the mixes in terms
of the appropriateness of the amount of dynamic range
compression applied in the mix. The results are summarized
in Fig. 8, showing the mean, grouped by mix type, with
error bars displaying 95% confidence intervals using the
t-distribution. No compression mix, automatic mix, two
semi-professional mixes, and alternative automatic mix are
notated as “No Comp,” “Auto,” “Eng. 1,” “Eng. 2,” and
“Alt-Auto” [10] respectively.

The “Eng. 1” and “Auto” mixes both rate consistently
high throughout, with “Auto” outperforming “Eng. 1” in
Song 1, 2, 4, and 6. The “Alt-Auto” mixes rate consistently
low with the exception of Song 5 and 6.

5.2.2 Q2: Degree of Imperfection

Q2 investigates the degree of sound artifacts or imper-
fection. The results are presented in Fig. 9.

It can be seen that all “No Comp,” “Auto,” “Eng. 1,”
“Eng. 2” mixes are all rated above the middle score, with
only the exception of “Eng. 2” in Song 2, which suggests
these mixes do not have obvious artifacts. “Alt-Auto” rates
the lowest (<20 for most cases) implying significant arti-
facts are produced in the mixes.

5.2.3 Qa3: Ability to Stabilize Erratic Level
Fluctuation

This question was designed to make the participants fo-
cus on how well the mixes can stabilize the level fluctua-
tions. The results are shown in Fig. 10.

“Eng. 17 performs best followed by “Auto” except for
Song 3. “Eng. 2” performs well in Song 2 and 3, while it is
the worst in Song 4.

5.2.4 Q4: Overall Preference

Q4 was designed to study participants’ overall preference
for the DRC. The results are shown in Fig. 11.

100
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;g
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40
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o
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No Comp Auto

Eng. 1

Eng. 2 Alt-Auto

Fig. 9. Averaged results of Q2: degree of imperfection with 95% confidence intervals, grouped by mix type
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Fig. 10. Averaged results of Q3: level stabilizing with 95% confidence intervals, grouped by mix type

Participants generally prefer “Auto” and “Eng. 1”” mixes
throughout all the songs. “Eng. 2” has a strongly varying
rating depending on the songs.

5.3 Summary

To give a clearer depiction of the overall performance
of each mix type, the averaged mean results with 95%
confidence intervals across all participants and songs are
displayed in Fig. 12.

Fig. 12 shows that the proposed “Auto” performs best in
Ql1, the appropriate amount of DRC. “Auto” also performs
quite well in terms of stabilizing the erratic level fluctua-
tion in Q3. More importantly, the proposed automatic mixes
are the participants’ favorite in Q4, the overall preference.
The no compression version is preferred to “Eng. 2 in Q1,
Q2, and Q4, suggesting that people sometimes dislike the
use of compression. The “Alt-Auto” is clearly the worst
overall performer. The mean results in Q2 show that the
Alt-Auto causes obvious sound artifacts or unpleasant ef-
fects. “Alt-Auto” uses pre-processing to equalize the loud-
ness (measured by EBU loudness standard) of multitracks
before compression, which is likely to make the percussive
instrument much louder than other instruments, resulting
in an unpleasant listening experience. The same issue was

addressed in [25]. This could be the reason that the “Alt-
Auto” performs poorly. Notice that although Auto and Eng.
1 perform similarly in the subjective evaluation, results also
show participants’ preference is song dependent. For exam-
ple in Fig. 10, Song 3 is rated the highest for Auto, while
the same song is rated the lowest for Eng. 1.

Overall, the results show that the proposed automatic
compression has very good performance based on various
criteria.

6 CONCLUSION

In this paper we have proposed a novel intelligent multi-
track dynamic range compression algorithm. The algorithm
utilizes the CA-DAFX processing architecture [2, 3], ex-
ploits the interdependence of the input audio features, and
incorporates best practices as well as subjective evaluation
results to produce the optimal amount of dynamic range
compression for multitracks.

To the best of the authors’ knowledge, this presents the
first fully automated multitrack dynamic range compressor
where all classic parameters of a typical compressor (ra-
tio, threshold, knee, attack, and release) are dynamically
adjusted depending on extracted features and control rules.

100
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Fig. 11. Averaged results of Q4: overall preference with 95% confidence intervals, grouped by mix type
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In the pursuit of intelligent algorithms, two new audio
features, namely percussivity weighting and low-frequency
weighting, were proposed to describe the transient nature
and spectral content of the signal. A method of adjustment
experiment was conducted to investigate the relationship
between human preference for ratio and threshold and the
proposed audio features in multitrack content. We applied
multiple linear regression models to the subjective results
to formulate the ratio and threshold automations that follow
the choices of the human operators.

The output mix produced by the proposed algorithm
has an outstanding performance in the final subjective
evaluation when compared against a raw mix, two semi-
professional mixes, and a previous automatic compression
approach. The results showed that the algorithm is able to
compete with or outperform the semi-professional mixes
in terms of four different perceptual criteria: the appro-
priateness of the amount of DRC applied, the degree of
imperfection, ability to stabilize the erratic level fluctua-
tions, and overall preference. However, evaluation with a
larger number of subjects of wider range of background
is needed to more formally assess the performance of the
proposed algorithm.

Subjective evaluation results have shown that spectral
content plays an important role in the pursuit of an intelli-
gent solution to dynamic processing. The authors plan to ex-
pand the algorithm to a more general intelligent frequency
and dynamic processing system, by providing a marriage
between dynamic processing and equalization processing
to eliminate the shortcomings of static EQ and conventional
dynamic processors.

All songs used in this work can be accessed from the
Open Multitrack Testbed at multitrack.eecs.qmul.ac.uk
[26].
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